Our company

Polyamide composite reinforcement

Home

Polyamide composite reinforcement

  • Chemical-Resistant Nylon Materials: Application Trends in Industrial Components
    Chemical-Resistant Nylon Materials: Application Trends in Industrial Components
    Oct 23, 2025
    The development of chemically resistant nylon materials is essential for addressing corrosion challenges in complex industrial environments. Although conventional nylon offers good mechanical and thermal properties, it degrades rapidly in strong acids, alkalis, solvents, and oxidizing agents due to hydrolysis and chain scission. To overcome this limitation, researchers have developed high-performance chemically resistant nylons such as PA6T, PA9T, PPA, and modified PA6/PA66 reinforced with fluorination or composite fillers. The essence of chemical resistance lies in suppressing molecular polarity and reducing hygroscopicity. By introducing aromatic structures or aryl substituents, molecular rigidity is enhanced and hydrogen bond disruption is minimized. Fluorinated groups form a hydrophobic barrier at the molecular level, preventing acid and base penetration. For components exposed to aggressive environments—such as fuel system fittings, chemical pumps, fluid connectors, and EV cooling system parts—these nylons can maintain structural stability for over 5000 hours. During processing, composite reinforcement further enhances performance. Glass fiber, carbon fiber, or mineral fillers reduce water absorption and improve dimensional stability. However, poor interfacial bonding may lead to microchannels for chemical intrusion. Therefore, coupling agents like silanes or fluorinated surface treatments are applied to strengthen the interface, ensuring mechanical integrity and corrosion resistance. With the rapid growth of electric vehicles, chemical processing equipment, and semiconductor manufacturing, the demand for corrosion-resistant polymers continues to rise. Nylon, with its processability and cost-effectiveness, is replacing certain metals and thermoset materials, particularly under moderate to high-temperature chemical conditions. Future research will emphasize multi-layer protective systems, combining bulk and surface resistance through nanocoatings, plasma treatment, and hybrid composites. Environmentally friendly variants with low moisture uptake and recyclability will lead the next stage of industrial nylon development.
    Read More

Leave a Message

Leave a Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

Home

Products

WhatsApp

contact